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Abstract—In this paper we describe the architecture of an
intelligent surveillance system tested at two reference airports.
This architecture is developed to support the human operator
and enables a multi-camera tracking of suspicious people in case
of an alert. The described architecture is based on a network of
non-overlapping cameras, each one connected to a self-developed
recording tool which provides acquired images to different image
processing modules. An efficient preprocessing makes it possible
to analyze the data in realtime. The system is able to detect, track
and recognize people, but also enables the prediction of where a
person will walk to by analyzing possible walking paths.

Index Terms—Airport Security, Decentralized Camera-
Network, Fast People-Detection, People-Tracking, Illumination
Correction, People-Recognition

I. INTRODUCTION

A central application field of the developed video analytic
system is the protection of critical infrastructures, especially
at airports. The size and complexity of major airports require
an extensive number of cameras for a sufficient surveillance.
The fast analysis of the acquired video material from several
hundreds of cameras poses a challenge for the security opera-
tors. For example, in January of 2010 a part of Munich airport
was closed for hours for the reason that the police searched
for a man whose laptop had triggered an alert for possible
explosives at a security checkpoint. The security wanted to
check that laptop again, but the man has left the checkpoint
carrying his computer into the terminal. Due to the fact that
this man probably just did not know anything about the alert,
several hundred people were evacuated and more than 100
flights were affected, whereas the man has never been found.
At the same time at Newark airport in New Jersey officials
shut down a terminal after a man walked into a secure area
without authorization. Videos have confirmed that the man
has entered through the exit, but the men’s identity could
not be determined while dozens of flights were cancelled and
thousands of passengers were re-screened. Cases at the airports
in Munich or Newark have proven that the recovery of an once
detected person over several camera viewpoints is a difficult
and tedious task despite the modern video technology that
is currently in place. Especially in areas with a high need

for security in order to protect human lives it is absolutely
essential to react to threats immediately, not least because huge
cost arises when terminals are closed and flights are canceled
in the case of critical situations.

This research project aims to develop a system that supports
the human operator in analyzing video data in order to track
and search for people, in case the operator has found a
suspicious person and activated an alarm. Although the system,
is primarily intended to be used at airports, it is possible to
adapt the system to other public areas like train stations or sta-
diums. A general overview of automated surveillance systems
is described in [1]. In this paper we describe the current state of
the developed system which is still in progress. Section II gives
an overview of the applied hardware architecture whereas the
software architecture is described in section III. Section IV
outlines the implemented architecture at the General Aviation
Airport Schönhagen and finally we will give a conclusion and
present our future work in section V.

II. HARDWARE ARCHITECTURE

In principal there are two main architectural concepts on
how to design the hardware infrastructure: a centralized and a
decentralized video processing which both offer advantages
but suffer from different limitations as well. The central-
ized architecture causes high computational cost on a single
processing unit, so this architecture is only usable in small
networks [2]. That is why an integration of further cameras is
highly limited. In a decentralized system each of the cameras
is connected to a dedicated video server and processing
unit, so the computational costs incurred are distributed over
several processing units [3],[4]. Here, the integration of further
cameras is very simple by just adding further processing units.
An additional advantage of a decentralized architecture is its
reliability in case of a system failure: if one processing unit
fails, the overall system is still operable. This is in contrast to
a centralized structure. However, the decentralized architecture
requires a synchronization of the system time between all
video recording units. Therefore, a central time server is
necessary.



Fig. 1. Overview of the hardware architecture schematically for two cameras. The architecture is divided into decentralized camera-based components and
centralized components. Decentralized components are the camera-recorder units and the computer clusters for the camera-based data analysis. The database,
the control and visualization unit, the module for people recognition as well as the reasoning module are centrally organized.

For the reasons of expandability and load balancing we
decided to apply a decentralized architecture for the camera-
based analysis. However, a centralized component is necessary
which enables the tracking of people across different cameras
as well as the location prediction. Hence, the developed system
consists of two classes: the decentralized camera-based data
analysis, as well as the centralized processing of the extracted
information across all cameras. The exchange of meta-data
is realized via the central database. The designed hardware
architecture is shown in Figure 1.

A. Decentralized Components

The decentralized components analyze the camera-related
image data. Therefore, each camera is connected to a video
server. A self-developed recording tool acquires the image
data and provides several image processing modules with
the captured images. The data exchange takes place via a
tcp/ip connection. Furthermore, for each camera a cluster of
computers (currently three) is used for the live analysis of the
acquired images. Here, different image processing modules
are analyzing the data, e.g. motion detection, background
subtraction, people / head detection and tracking methods.

B. Centralized Components

One part of the centralized system is the control and
visualization unit which enables the interaction between the
different components of the overall system. This unit is able to
visualize different cameras simultaneously, but also allows an
interaction with the operator. In the case of an alert the opera-
tor selects a suspicious person so that the system knows whom
to look for. To track this person in a multi-camera network
the recognition module starts to look for this individual across
several cameras using the reasoning component. The reasoning
component narrows down the search to only those areas which
are chronologically and geometrically reasonable. Therefore, a
geometric model of the airport is used which reduces the huge

amount of data enormously. The location prediction is based
on precomputed statistical paths and the individual previously
ones which are computed by the recognition module. The
hardware requirements of both the reasoning module as well
as the location prediction is non-varying even if the number of
cameras changes. The communication between the centralized
components takes place via the central database.

III. SOFTWARE ARCHITECTURE

As the described hardware architecture has shown before,
the system is divided into two parts: the decentralized camera-
related analysis and the centralized people recognition respec-
tively the location prediction. In this system a considerable
amount of sensor data is generated due to the used HD-camera-
sensors and the high number of cameras that is necessary to
observe an airport. To handle this sensor data, it is necessary to
reduce the data volume very fast. This is realized by extracting
meta data from live camera sequences during the camera-
related analysis. This precomputed information is used to
speed up the multi-camera people tracking and the location
prediction.

A. Decentralized Components

This analysis is decentralized, in other words each method
works separately for each camera.

1) Illumination Correction: For the concrete scenarios
which are addressed in this work, indoor and outdoor cameras
are needed. However, the illumination differs between different
camera locations. Furthermore, the illumination differs all over
the day due to the changing position of the sun and dy-
namically changing whether conditions (sunny/rainy/drifting
clouds). By sideward illumination (especially for rooms with
big windows), the illumination differs for one camera view in
the same time. However, individual features must be similar
in different illuminations for the use of multi-camera people
tracking. For that reason, a hardware near image enhancement



is calculated before the video stream will be recorded as single
JPEG images with a low compression rate. The used image en-
hancement is based on the camera internal pixel representation.
The internal representation of one color channel of one pixel
is for modern high-resolution observation cameras higher than
8bit, which is only available for the external image processing.
In general, the internal bits are linearly mapped to 8bit for the
external image representation. But in our case it is preferable to
use a logarithmic mapping function. In this work the preferred
function [5] is a gamma correction (equation 1).

f(x) = (x/2n)γ · 255 ; n = number of internal bits (1)

By the use of this camera internal gamma correction, the
image noise does not increase since no sensor information
is overrepresented. The gamma γ is estimated by equation 2,
where min(dest) is the minimal destination value, max(dest)
is the maximal destination value, min(value) is the minimal
value of the current image and max(value) is the maximal
possible value of the input image. As we mention before, in
this work we map to a 8bit image, so min(dest) is set to
1 and max(dest) is set to 256. The current value is set to
the mean of the RGB-channels and the overall minimal value
is searched for min(value). In our implementation, the input
image consist in 12bit for each color channel, so max(value)
is set to 4096.

γ =
log(min(dest))− log(max(dest))
log(min(value))− log(max(value))

(2)

We limit the gamma to 0.63, since the use of a gamma correc-
tion with a significantly smaller gamma leads to information
loss, since not each of the 82 channel values are usable in the
external image representation. In the case of video analyzing
it is preferable to smooth the gamma temporally.

γt+1 = γt + α× (γ − γt) α ∈ [0, 1] (3)

This hardware near correction is used in combination with a
low brightness threshold for a camera internal automatic expo-
sure time adaptation. So the recorded images are darker with
less overexposure whereas the mapping function makes the
image brighter and smoother in illumination. So the recorded
8bit image represents some of the previously overexposed
image areas just as the well-illuminated areas. With the help of
this correction also some areas are represented in the recorded
image, which are so dark that they became black in the 8bit
image without this illumination correction. The result of this
hardware near image enhancement is exemplary shown in
Figure 2. The reduction of the threshold for the automatic
exposure time adaptation comes to a shorter illumination time
which reduces the motion blur.

2) Salient-based People / Face Detection: The next step in
the camera-related analysis is a salient-based people detection.
First, the foreground will be separated with the help of a
background model. This is the first and fastest step to reduce
the data volume during the live analysis. Second, an optimized
histogram oriented gradient based people detector [6] detects
all people in the foreground areas before the model of the

Fig. 2. Illumination correction. This figure shows an example result of the
presented hardware near illumination correction. The left image is recorded
without the correction and the right is recorded with the correction.

background is updated only in those areas, where no people
are detected. People detection only on foreground areas speeds
up the detector and reduces false detections. For a massively
reduction of the effect of learning no or less moving people
into the background model, the model is only updated on areas
where no people are detected. To handle small illumination
changes, a threshold to evaluate the difference between the
current image and the background model is used. To handle
different illuminated scenes the threshold will be calculated
by using the standard variance of the grayscale image. Fur-
thermore, an opening on the binary foreground map is used
to reduce the influence of noise. This method is schematically
shown in Figure 3.

Fig. 3. Salient-based people detection. First the threshold to evaluate the
difference between input image and background model is calculated and a
binary foreground mask is determined. Now, the people detector works at
the foreground areas and the background model is updated for all non-person
areas.

Equivalent to the people detector, a face detector operates
only on foreground areas. Of course, a face is located in the
area of a person, so it is imaginable to detect faces only in
those areas where a person was detected. In real operations,
this could reduce the system performance, since especially in
crowded environments full people detections fail while a single
face detection works fine.

In our test this method speeds up the people detection
about 50 percent in the mean. This method was tested with
5 sequences, which are recorded in a realistic environment at
the airport Erfurt-Weimar, Germany. Each sequence lasts one



minute and is recorded with several high resolution cameras
at different locations.

3) GPU-based Detection Methods: Especially in security
scenarios speed is a very important factor. However, reli-
able people detection methods like the histogram of oriented
gradients algorithm (HOG) are very slow and not suitable
for realtime applications. Hence, we decided to use a GPU-
based implementation of the HOG algorithm which is based
on the implementation of [7]. Our system is equipped with
two NVIDIA GeForce GTX 590 video cards, so that 4 GPUs
are available for parallelization. The parallel implementation
runs over images with a size of 1600x1200 pixels at about
350 ms. Since we need to process images at 10 fps, we
revised this approach in such a way, that it is possible to
process each incoming image on a different GPU. Therefore,
we developed a multi-threading approach which handles the
incoming image data. Each time an image is available, it is
send to a free GPU which is then blocked until the processing
has finished. The processing loop is shown in Figure 4. Using
this approach we are able to process 10 fps. In contrast,
running the standard HOG algorithm on an Intel Core i7
3,4 GHz CPU, the measured processing time is 3270 ms per
frame. Besides the detection of people it is also possible to
detect upper body parts and heads by just changing the SVM
classifier.

Fig. 4. Multi-threading approach of the GPU-based HOG implementa-
tion. This approach enables a suitable distribution of incoming images across
all available GPUs.

4) Tracking and Feature Extraction: Both the people de-
tections and the face detections are tracked in realtime for one
camera view to get first trajectories for the location prediction.
These camera-related tracks are also used to find a good
representation of a person for the multi-camera people tracking
by combining several camera-related views of this person to an
individual model by connecting all locations of a person with a
similar view, respectively similar features. For the later multi-
camera people tracking, first features, like the mean color
(hue) and the intensity are extracted from areas of the upper
and lower body during this camera-related tracking (Fig. 5).
Furthermore, the vertical and horizontal texture rates as well as
one histogram of the hue and one for the intensity are extracted
only from upper body. Each of this histograms consists in 8
bins.

Fig. 5. Feature extraction during tracking. First features like the hue,
intensity and the texture proportion are extracted during tracking.

This tracking was tested on five sequences with 8 people,
which are recorded at the airport Erfurt-Weimar for nearly 50
minutes. In this test no person view is connected to any other,
so every view is represented by one track.

To connect the several views, a further tracker is used [8]
which is very robust to view changes and partial occultation.

5) Data Fusion: A series of image processing modules
is used to analyze the video data, e.g. motion detection,
background subtraction or people / head detection methods,
which all struggle to perform well under certain conditions. In
order to obtain better results and to minimize false detections
we fuse the results of the different single modules. Since most
of the methods write their results in the form of ROIs into the
central database, it is easy to combine the different outcomes.
Several approaches exist for data fusion which can be applied
on different hierarchical levels [9]. Here, we decided to apply a
decision-based fusion. Therefore, in case of a person detection
ROI, our fusion module starts to look for intersections with
ROIs of other modules. A score is computed based on the
intersections. If this score is above a specified threshold, the
ROI of the person detection module is considered to be true.
However, if there is a person detection that is not part of the
foreground (as a result of the background segmentation) and
if there is no motion detected in that area, the probability of
being a false-positive is very high so that this ROI can be
discarded. Another possibility is to fuse the results of person
detection and head detection methods in such a way, that
the detection of a person is only considered to be true if a
head was detected in the upper quarter. There is a number
of different suitable possibilities on how to fuse results, like
combining upper body with head detections, head with face
detections, or even all of them. As a result of the fusion
process the rate of false-positives is massively reduced which
increases the reliability and leads to a more robust system.
This is due to the fact that the decision process has more
independent information available. A complete elimination of
false detections is not achieved in all scenarios. However,
compared to the result of single modules the overall result
is considerably better. An example of the fusion process is
shown in Figure 6 where the fusion of the results of different
image processing modules has eliminated all false-positives.



We tested the performance of the fusion process on different
sequences which were recorded on the two reference airports
and could achieve a reduction of false-positives of about 97%
on average.

Fig. 6. Data fusion. Left: Result of a person detection method with a high
rate of false-positives. Right: Result of the fusion process. Here, the results
of motion detection, background segmentation and person detection are fused
which, in that case, eliminates all false-positives.

B. Centralized Components

The multi-camera people tracking and the location pre-
diction is centrally realized, since these components interact
with video streams and meta data from different cameras.
When an alarm is activated, security operators are able to use
the presented system to find conspicuous people in the past
for a better evaluation of the current situation. Furthermore,
it is also possible to find wanted people in the present.
To estimate the position of a potential dangerous person in
non-observed areas or in the future, the presented system is
able to predict this position. This supporting system is based
on people recognition which is essential for a multi-camera
people tracking with non-overlapping observation areas.

1) Multi-Camera People Tracking: Firstly, an operator
marks a detected person and starts the multi-camera people
tracking which is based on people recognition. After that, the
camera-related tracks of this person will be merged for the
current camera view and a person representative will be cal-
culated. In the same time, the temporal and spatial reasoning
selects the next possible camera positions and timelines. In
this way, this component reduces the search area massively
with the help of a geometric model of the operating area.
After this, the full body [10] and facial people recognition
operates with few selected hypotheses. In this way, the analysis
of all recorded image sequences is avoided. For a further
speedup of this recognition, the pre-calculated information is
used in combination with new extracted information. The full
body and the facial people recognition systems generate two
hypotheses lists which are separately merged to one final list.
Finally, this merged list is presented to the security operator,
which confirms the correct hypotheses and decides whether
the people recognition stops or will be continued for the
next possible camera positions. The computation time of this
component is dependent on the number of people tracks for
possible camera locations and timelines.

2) Location Prediction: The prediction of the current non-
observed people location as well as the future people location

is based on a global statistical model and on the individual
path model. The global statistical model is generated by
analyzing the processes at an airport and mapping them into a
concrete geometric model. Furthermore, temporally installed
laser range finders are used for an anonymous people tracking
in order to generate typical paths [11] and to optimize the
global statistical model. To generate the individual path, the
multi-camera people tracking system is used. For this location
prediction as well as for the reasoning component, a map of
the operational area is needed.

IV. IMPLEMENTATION AT THE GENERAL AVIATION
AIRPORT SCHÖNHAGEN

For the evaluation and testing of the developed video
analytics system a test environment was realized at the General
Aviation Airport Schönhagen south of Berlin, Germany. Here,
the research work could be applied to a realistic airport
infrastructure and the prototype system could be tested under
conditions that are not obliged to strict security regulations as
is the case at major airports with significant passenger vol-
umes. Furthermore, the GA airports themselves are a targeted
application area of this research project, since the developed
technology could prove to be a cost-efficient solution for
the securing of assets and aircrafts, especially if the security
regulations are strengthened.

Fig. 7. Overview of the General Aviation Airport Schönhagen. The image
shows the positions of the mounted cameras. The red line indicates a typical
walking path.

As the basis for choosing the different camera positions
several scenarios have been constructed to analyze possible
routes of persons using the airport infrastructure and to account
for versatile lighting conditions and distances to targets. The
installed system consists of seven camera positions that allow
for a wide surveillance while still being punctual and thus
realistic from the user’s cost perspective. At three positions the
cameras are fix-mounted with weather-proofed housings, while
the other four are flexible positions for the testing of different
camera adjustments. The cameras are equipped with lenses
of different focal lengths. In general, cameras which monitor



a large area are equipped with a short focal length. Those
ones which focus on face detection scenarios for example need
a longer focal length, which means a smaller field of view
but also means a high magnification. In order to evaluate the
described system we have developed scenarios with different
levels of difficulty. In all scenarios there is one target person,
but the number of persons which can be seen in the cameras
differs from one person to a group of persons which leads to
occlusions. Figure 7 gives an overview of the General Aviation
Airport Schönhagen and shows the positions of the mounted
cameras as well as the walking paths in our scenarios.

Fig. 8. Camera system realized at the General Aviation Airport
Schönhagen. The image shows the camera network and how the different
units are connected to each other.

All video data is transferred into a server room, which is
also working as a security control stand in the demonstration
of the system. The cable distance from here to the camera
positions varies from 50 meters to about 450 meters. To mini-
mize signal interference and ensure the correct transmission of
the large data streams from each camera, the longer distances
are covered by using optical fiber cables. The signal to the

GigE cameras as well as to the recording computers is then
transferred using media converter on both ends. A total of
nine computers is installed in the server room, each with
standard performance configurations (Intel Pentium Core i7
2.8 GHz, 8GB RAM, 500 GB disk drive, 64 bit Windows 7
Pro). These are connected over a gigabit network switch. For
each camera a single computer is dedicated to the recording of
its raw video data. While the developed analytics software runs
on the remaining computers and further units that are added
accordingly. The realized network is shown in Figure 8.

V. CONCLUSIONS AND FUTURE WORK

In this paper we present a system architecture which enables
a multi-camera people tracking with non-overlapping obser-
vation areas. This architecture allows a scalable number of
cameras by adding one image recorder and one decentralized
computer cluster for each camera. The system will be further
tested and evaluated regarding its usability from the security
operator standpoint as well as regarding its acceptance by
affected persons, who are using the infrastructure as a pilot,
passenger, or airport employee. Furthermore, the methods
described in section III will be separately optimized and tested
in further works.
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